我要留言收藏本网
我的位置:资讯动态/业界新闻
联系方式
通信地址:
北京市海淀区上地东路1号盈创动力大厦E座507A
邮政编码:100085
联 系 人:李老师-会员/标准/朱良漪奖、刘老师-产业研究、杨老师-ACAIC、秦老师-信息化
联系电话:
010-58851186
传 真:010-58851687
邮 箱:info@fxxh.org.cn
官方微信公众号
谭久彬院士:高端精密装备精度测量基础理论与方法
2023/02/27来源:中国科学基金阅读:1780 次

高端精密装备精度测量基础理论与方法

谭久彬1  蒋庄德2  雒建斌3  叶  鑫4**  邾继贵5  刘小康6  刘  巍7  李宏伟4  谈宜东8  胡鹏程1  胡春光5  杨凌5  赖一楠4  苗鸿雁 王岐东4

1. 哈尔滨工业大学 仪器科学与工程学院,哈尔滨 

2. 西安交通大学 机械工程学院,西安

3. 清华大学 机械工程系,北京

4. 国家自然科学基金委员会 工程与材料科学部,北京 

5. 天津大学 精密仪器与光电子工程学院,天津 

6. 重庆理工大学 机械工程学院,重庆 

7. 大连理工大学 机械工程学院,大连

8. 清华大学 精密仪器系,北京 



摘要

完整而精确的测量信息获取是装备设计优化、制造过程调控和服役状态保持的基础,是实现重大装备“上水平”“高性能”的内在要素。本文分析了我国高端精密装备精度测量基础理论发展所面临的重大需求挑战,总结了当前高端精密装备制造精度测量理论、方法与技术领域的主要进展,凝炼了该领域未来5~10年的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。

关键词:精密测量;高端精密装备;可溯源;极限测量;多场耦合测量;半导体测量;大尺寸测量

在以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造领域,多源、多维、多尺度的测量信息及其融合实现装备性能优化设计、部件精度检验匹配、制造过程精细调控、服役状态长期保持的核心技术,是实现重大装备“上水平”“高性能”的内在要素支撑。

      高端装备性能指标逼近理论极限,结构极其复杂,尺寸更加极端,材料物化特性更加特殊,多物理场耦合效应更加显著,传统基于产品几何精度逐级分解单向传递的制造精度测量理论体系难以保证超高性能指标要求。一方面,几何制造精度对最终性能的影响非线性效应显著,在零件—部件—组件—整机高度相关的序列制造过程中,单个环节的精度失调失配都会耦合发散传递;为避免装备整体性能失控,必须具备大量程、高精度、高动态、全流程实时监控的测量能力,在整体系统层面进行精度协调优化,保障最终制造质量与性能;另一方面,为保证超高性能的稳定实现,必须最大限度消除内在应力,全面分析材料物性、几何结构、环境工况等要素变化及其相互影响,急需突破现有技术条件,通过多源、多维、多尺度测量信息获取,对制造过程进行全面控制,使整机装备运行于设计最优状态,从而保证最高性能表现[1-5]。在当前全球制造面临智能化升级,我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备普遍存在“卡脖子”现象的背景下,召集相关领域同行专家,为我国高端精密装备制造精度测量技术发展把脉选向、凝聚共识,研讨面向高端精密装备制造的高精度测量发展路线,尤为迫切重要。

1   高端精密装备精度测量研究现状与挑战

      当前高端装备制造已从传统机械、电子、光学等单一制造领域主导,发展为创新聚集、信息集成、智慧赋能的多领域综合复杂产业体系,涵盖从芯片等核心元件到高端飞机船舶等重大装备各个方面。高端装备最终能够实现的性能源于对每个环节精度的精细调控,源于对整体状态信息的充分获取,源于测量理论方法及技术设备的不断完善。探索建立面向复杂装备制造的测量理论、方法与技术,支撑多环节、多层次、高精度的精度匹配调控已经成为精密复杂装备制造中的重要基础问题,并聚焦于:极端条件下可直接溯源几何量超精密测量;多物理场耦合多约束精度调控;多源、多维、多尺度测量信息高性能传感;智能制造大场景精密测量方法等四个重要方面(图1)。

图1 高端精密装备精度测量研究聚焦领域

1.1   极端条件下可直接溯源几何量超精密测量

      在高端精密装备制造领域,极端条件下的可直接溯源几何量超精密测量,贯穿了装备核心零部件制造、整机集成、在役工作、制品质量表征和工艺提升整个过程,是装备自身精度和装备线工艺质量调控不可或缺的核心技术基础。可溯源能力将超精密测量结果直接参考到国际计量基准,可为极限测量精度的稳定实现提供根本保证,最大限度提升装备性能和运行品质,是超精密测量技术的公认发展方向。

      传统计量溯源体系建立在严格控制、环境稳定的实验室条件下,而高端精密装备制造及运行过程伴随高速运行、严苛环境等极端条件,对实现可直接溯源的几何量超精密测量提出严峻挑战。如在光刻机制造领域,基于干涉原理的超精密多轴测量可将测量结果溯源至光波长基准[6,7],对提高装备精度性能意义重大。下一代EUV光刻机线宽将达到1 nm,其核心部件——双工件台的运动速度超过1 m/s。为在高速运行条件下保证优于1 nm的超高定位精度,需要对工件台和曝光镜头进行高达22轴的冗余测量(图2a)。能满足ASML光刻机测量要求的高端超精密双频激光干涉仪只有美国Keysight、ZYGO等公司生产,“卡脖子”问题严重。尤其在下一代光刻机开发中,针对更高速、更多轴数的纳米精度测量问题,国内相关技术与装备尚需从光源系统、信号处理系统、光学元件和集成式干涉系统等方面展开全面深入研究[3, 9],追赶国际先进水平。

      在航空航天特种装备领域,其高温、高压、高速、高真空等特殊使用环境也对超精密测量技术提出极高要求。如航空超高音速飞行器的新型复材的工作温度超过1600 ℃,准确测量复材热膨胀系数可为飞行器气动外形设计和全周期寿命评估提供重要依据(图2b)[10];对地观测用相机的地面装调和在轨工作环境条件完全不同,迫切需要适应真空、超低温且失重环境的在线原位超精密测量技术支持等[11,12]。我国在极端条件下精密测量方面的研究总体处于起步阶段,相关测量理论、技术装备和实验条件仍不完备,面对国内相关需求的急迫性和普遍性,开展可溯源的极限测量技术攻关,将具有重要战略意义和社会效益。

图2 可溯源的极限测量典型应用场景

1.2   多物理场耦合多约束精度调控

      高端装备制造与服役环境更加恶劣,性能要求更加苛刻,智能化要求更加迫切。复杂恶劣环境下多物理场高精度感知技术、智能在线动态监测技术、测量可靠性与可溯源性已成为实现高端重大装备智能制造与高可靠服役的核心驱动技术和本领域前沿热点、难点问题。

      国内外学者在多物理场智能感知方面的研究,聚焦于智能制造过程中的多物理场在位测量与重构方法[13]、多物理场动态监测与预测方法[14, 15]、典型构件制造工艺参数调控方法[16]等方向。在工业应用层面,波音、空客等航空公司已应用数字孪生技术初步实现了零构件制造中全局力位状态监测,但当前仍处于系统工程技术探索与优化阶段。我国在装备构件制造及服役过程中的多物理场感知领域亦开展了较深入研究,如在飞机机翼、发动机压缩盘等薄壁件制造中位移/应变/温度场动态监测与重构[17-19]、复材构件加工中多物理场多参量监测[20]、装备服役过程温度场、磁场全场感知与动态重构等方面[21],已形成了系列静/动态多物理场全场在线感知与重构方法,但尚未形成完备的理论与技术体系。面向高端装备制造及服役工况高温、强磁场、狭小空间等极端复杂化的发展新趋势,多参量测量及精度溯源、多物理量强耦合动态演变机制、多物理场全场状态与边界约束映射关系、工艺参数实时调控,以及航空高端装备制造及服役维护性能的高性能动态测量等方面的研究需求将更加迫切,未来需要重点关注复杂物理场耦合原位高精测试、智能制造中的多物理量测量与解耦等相关原理与技术(图3)。

图3 复杂制造工况下多物理场智能感知测量需求

1.3   多源、多维、多尺度测量信息高性能传感

      半导体芯片产业是国民经济的关键基础,芯片制造已经上升为国家最紧急和最重要的战略任务之一。半导体芯片的制造是一项极其复杂的系统性工程,其制造质量高度依赖于高精度检测技术及设备的支持,检测技术呈现出多源、多维、多尺度、高性能感测等突出特点,研发难度大、综合要求高,相关高端仪器装备已成为我国重点“卡脖子”问题[22]

      在半导体芯片制造领域,台积电和三星已实现了5 nm制程大规模量产并正在开展3 nm制程试产,而国内目前14 nm以下制程尚未量产。同时,半导体芯片制程已经从二维向三维发展[23, 24],现有技术难以对具有高深宽比纳米结构的三维芯片进行准确测量,新型测量方法和相关设备的技术革新迫在眉睫[25-29]。从半导体芯片的发展趋势看,未来在工艺制程中,测量精度必然要求达到亚纳米量级。由于界面效应和尺度效应的影响,在加工过程中材料除了发生几何尺寸变化,还时常伴随着理化属性变化,使得在高功率、高频以及高速运行状态下,芯片热态参数的获取成为技术挑战[30,31]。半导体芯片测量技术及装备除了要求具备传统几何量测量能力,还需要具备热、磁、电等多物理场表征能力,亟需开展微观尺度下超越散粒噪声极限的多维/多物理场芯片原位测试技术及仪器研究,形成具有自主知识产权的半导体芯片核心测量方法和技术,解决三维半导体芯片中纳米结构多维多尺度测量难题(图4),推动新一代半导体芯片制造技术的发展,为我国在芯片领域实现“并跑”甚至“领跑”提供支持。

图4 半导体芯片制造过程多源、多维、多尺度测量信息高性能传感需求

1.4   智能制造大场景精密测量方法

      航空航天大型复杂装备的超高性能必须依靠精确外形控制来实现,外形尺寸信息是控制制造过程、保证制造质量、提升产品性能的关键条件。目前,以激光跟踪仪为代表的球坐标单站测量仪器仍是该领域主流测量设备。以大飞机机身制造为例,通过一台或多台跟踪仪对大部件关键控制点坐标进行精准测量,为姿态分析、工装协同定位提供基础数据和决策依据,已成为机身数字化对接、总装等核心环节的标准工艺要求[32,33]

      作为数字化制造的发展进阶,智能制造将进一步由针对少量工艺控制点的坐标测量定位拓展为对人员、设备、物料、环境等多元实体外形、位姿及相互关系的全面、全程测量感知,测量需求表现出全局、并发、多源、动态、可重构、共融等全新特点[34,35]。大规模、多层次、实时持续的物理空间数据获取,特别是高精度空间几何量获取是实现复杂装备智能制造的前提和国内外相关研究的关注重点。虽然新型跟踪仪、激光雷达等通过绝对测距技术创新部分克服了传统跟踪仪遮挡导致断光的问题,提升了测量效率,但单站球坐标测量模式原理上只能实现单点空间坐标顺序测量,视角受限、功能单一,无法满足智能制造现场多目标、多自由度、快节拍的自动化测量需求[36,37]。以室内GPS、激光跟踪干涉仪为代表的多站整体测量设备采用空间角度、长度交会约束原理实现大尺度空间坐标测量,具有时间和空间基准统一的突出优势,但系统组成较为复杂,误差因素多,精度控制难度大,简化结构、控制成本、提升动态测量性能是其未来面临的技术挑战[38-42]。目前,上述高端仪器大部分处于欧、美、日少数厂商垄断生产状态,针对“工业4.0”等智能制造场景的预研布局也已启动。国内高校及研究机构虽已开展相关仪器研制,还需紧密把握全球智能制造升级机遇,面向下一代智能制造大场景新需求新特点,持续探索精密测量新体制、新方法、新技术,实现原理、技术、器件、装备系统性突破(图5),为我国制造业升级转型提供强有力的测量感知技术支撑。

图5 智能制造大场景精密测量需求

2   高端精密装备精度测量未来发展趋势预测

2.1   极端条件下可直接溯源几何量超精密测量发展趋势   

      (1) 几何量超精密测量精度极限即将进入皮米尺度。当前主流光刻机中平面反射镜面型测量精度优于1 nm,下一代面型检测重复精度将达到10 pm,光刻机集成和长期在役工作中超精密运动部件的测量精度正从1 nm量级突破至0.1 nm量级;硅片光刻过程特征线宽测量精度也已进入原子尺度;空间引力波探测装备中镜片面型检测精度达到0.1 nm,相对位移测量精度达10 pm。面向高端装备核心零部件制造的皮米级超精密测量已成为下一阶段发展必然要求和重点攻关方向。

     (2) 从静态/准静态测量向高速高效动态测量发展。超精密机床、光刻机等加工装备中,超精密运动目标的速度从0.1 m/s量级逐步提升到3 m/s以上;引力波探测中超精密位移测量对象,也将从地面的静止目标转变为4 m/s的准静态目标。随着上述动态测量技术和仪器的发展,相应的仪器计量校准装置也需从目前的完全静态计量测试升级到高速率动态计量测试。

      (3) 从一维单参量离线测量转向多维复杂参量在线、在役测量。光刻机、超精密数控机床等先进装备多参量耦合、多轴运动加工的工作特性对传统机床基于单维多步测量的定期校准方式提出巨大挑战,迫切需要嵌入可直接溯源的7~22轴精密仪器进行在线在役测量。航空发动机叶片测量中,传统离线条件下测量低速转动叶片形状精度已无法满足研制需求,实际高速转动工作状态下对叶片形状进行在线在役的超精密测量成为亟待解决的问题。

      (4) 从传统物理量/场精密测试到基于量子传感的超精密测试。先进制造技术与装备在制造过程中需要开展位置、姿态、压力等多维力学量的超精密感知,磁、温、电等多物理场的精确测量,即高性能高质量信息传感能力。未来亟需突破超高精度、超高分辨传感与溯源等关键技术,不仅需要通过技术和工艺创新,实现传统传感技术的微型化、精密化和智能化,更要开展基于量子信息调控的多场解耦方法与信息解算关键技术研究,研制核心传感器件与测试仪器,实现传感技术的跨越式发展。

2.2   多物理场耦合测量与精度调控发展趋势

      (1) 面向重大装备的复杂物理场耦合原位高精度测试。重大装备制造、服役过程伴随高温、高压、高转速、高冲击等复杂物理场强耦合作用,常规方法“测不了”“测不准”“难存活”。聚焦极端环境下感知机理与信号传输、多场环境因子耦合作用机制与抑制、多场耦合环境标定与量值溯源等科学问题,重点研究复杂物理场强耦合环境下传感测试新方法、环境因子作用模型及抑制/衰减方法、封装防护、可溯源测试与标校方法等,发展面向精密复杂测量体系的人工智能技术,通过智慧赋能解决复杂物理场耦合环境下超/跨量程、大动态范围、高精度测试难题,为原位高精测试开辟新思路。

      (2) 面向高端装备制造的多物理量测量与解耦。高端装备关键部件制造过程待测参量呈多元、高动态、强耦合、表里兼顾等发展新趋势,传统测量方法难以满足。聚焦多物理场敏感机制与一体化传感解耦、多物理场全场状态与边界约束间映射、复杂多因素强耦合测量精度调控等科学问题,强调多源数据的有效集成,重点研究高端装备多参数测量多敏感功能柔性传感器、复杂环境下多物理场全场状态信息智能感知与估算、多参量关联演变下的工艺参数调控等,为保障高端装备制造性能提供理论支撑与技术基础。

      (3) 微纳尺度形态性能多参数测量。微纳制造过程中材料形态、性能参数变化过程相互关联耦合,多参数同时观测是准确揭示制造过程内在规律机理的前提条件。聚焦高空间分辨力激光共焦显微成像、近场光学显微成像和原子力显微成像等原理,重点研究上述显微成像技术与散射光谱、LIBS光谱和质谱的高效、高分辨率联合测量方法,研究新型光谱/质谱信息高灵敏度探测机理与方法,实现微纳米制造中微纳尺度下力学、热学、光学等性能的多参数高分辨、高灵敏、高准确探测。

2.3   多源、多维、多尺度测量信息高性能传感发展趋势

      (1) 纳米/亚纳米量级高分辨率检测。随着半导体工艺结点的不断缩小,高分辨率检测技术面临空前挑战。比如:EUV掩模版检测分辨率需要达到原子级,等效检测分辨率达到10 nm以下。目前仅有德国Zeiss和日本LaserTech有商业化产品,我国在这方面尚无技术储备;前道晶圆检测方面,世界范围内10 nm以下节点的CD和缺陷在线检测技术仍未成熟。

      (2) 三维复杂微纳结构精确检测。芯片制程正在从二维向三维发展。具有三维结构FinFET已经成为14 nm以下乃至5 nm工艺节点的主要结构,存储芯片也向具有大深宽比(>80∶1)三维垂直结构的3D NAND发展,工艺难度随层数呈指数上升,必须对芯片三维结构进行精确测量,才能指导工艺优化并保证芯片功能。但现有检测设备仍难以对上述结构进行无损定量检测,极限特征尺度下的大深宽比芯片结构检测已经上升为世界性难题。

      (3) 满足量产速度的高性能在线检测。量产速度决定生产成本。根据英特尔发布的需求数据,更大晶圆尺寸和更小工艺结点已成发展趋势,裸晶圆的量产速度需达到2~3分钟/片,这对检测设备的速度提出了更高的要求,极大地增加了研制难度。目前满足量产速度的在线检测方法在全球范围内仍处于研究探索阶段,高性能在线检测技术与设备将在半导体产业发挥至关重要的作用。

2.4   智能制造大场景精密测量的现状与发展趋势

      (1) 新型智能制造综合测量系统构建理论。面向智能制造过程超高精度、高动态、多模态、多尺度、多维度测量需求的全局信息测量感知是当前研究重点和难点。需要从底层理念创新入手,探索覆盖复杂智能制造大场景需求的综合测量新理论,解决统一空间、时间基准构建,多物理场耦合约束条件下的精度调控,面向生产场景的测量系统设计重构等基础原理问题,突破具备多目标绝对测距能力的新型可溯源光学定位、制造场景多模型精度分析及优化设计、制造环境因素实时监测与修正等关键技术,最终构建可服务智能制造大场景、全流程的多维、多层次、多任务可溯源高精度综合测量体系。

      (2) 广域全局空间、时间基准统一测试方法。基于“测量场”概念构建全域整体测量系统可实现大场景空间基准统一,具有多任务、高精度、可扩展等独特优势,进一步完善多体、多自由度动态测量能力是相关技术能否融入智能制造的关键和重点。需要突破现有静态测量理论框架,探索融合时间—空间信息的高精度、可溯源动态测量新原理方法,研究整体网络精确时统、多观测量高速同步获取、时间—运动—空间信息联合建模表达及精度控制、溯源与补偿等系列关键技术,有效提升测量网络动态测量能力。

      (3) 物理信息融合测量新原理。通过测量完成物理状态到信息数据的高质量转换,是建立物理信息融合,实现智能生产和精准服务的基础前提。还可预见,在全新物理信息融合环境下,高性能算力大为丰富、多元要素交互更为广泛、大数据记录更加完备,将为机械测试学科发展更高性能的新型感知测量理论提供前所未有的基础条件。面向未来物理信息融合制造环境的测量新原理将改变以往从“物理”到“信息”的单向传感模式,引入有限元分析模型、人工智能、大数据挖掘等先进信息手段与AR、VR新型交互模式,和现有物理传感方法形成映射联动,实现多源时空信息处理与物理实测手段相互补充,构建面向“人—机—环”共融的测量新模式,为进一步突破现有测量方法物理分辨率,拓展机械测试学科研究领域提供新的基础手段。

3   未来5~10年高端精密装备精度测量发展目标及若干建议   

      针对以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造的“卡脖子”测量难题以及未来发展战略,通过顶层设计、集中力量、先期布局和协同攻关,在未来5~10年时间应实现以下突破:

      (1) 微纳特征结构(深)亚纳米级在位/动态测量方法及微环境误差传递与微环境超精密调控基础理论,多维高速高动态超精密测量方法与动态计量校准基础理论,量子精密测量与溯源方法; 

      (2) 面向高端制造的微区形态性能多物理场多参数耦合机理、不确定度评估与量值溯源,光子—声子/自旋量子调控及其高精度传感与测量方法,以及传感器件与测试仪器;

      (3) 面向半导体制造的电磁波与物质相互作用的纳米量测新机理,泛薄膜体系跨尺度光学精密测量新原理,接触—非接触复合测量新模式,以及测量装备的校准与可溯源问题;

      (4) 面向智能制造的新型可溯源光学定位原理方法,融合惯性、时间信息的高性能全局测量网络动态测量方法,现场环境因素实时监测与修正方法,以及物理—信息融合测量新原理与方法。

      建议着重围绕以下4个领域,通过关键技术攻关、前沿探索及多学科交叉深入开展原创性研究。

      (1) 面向高端精密装备的核心零部件加工、集成及服役中的精密测量基础理论与复杂物理场耦合原位高精测试理论;

      (2) 面向高端制造与微纳精密制造的多物理量、多参数的形性测量基础理论;

      (3) 面向半导体制造的测量新原理,特别是超光学衍射分辨极限、高性能非破坏、智能质量检测等方面的测量基础理论;

      (4) 面向智能制造的测量基础理论,特别是综合测量系统构建方法,现场广域全局空间、时间基准统一测试新方法,物理信息融合测量新原理等。

4   结   语

      在当前国际形势深刻复杂变化的时代背景下,发展自主可控的高端精密装备精度测量技术及仪器,满足我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备制造急需,为中国制造在智能化升级中提供强有力支持,是历史赋予的重要使命。精密测量技术研究必须坚决贯彻“四个面向”的科研思想,深入高端装备一线,持续跟踪、预判高端精密装备精度测量基础理论最新动向,抽取真科学问题,深度解决挑战性问题;必须快速推进基础研究、技术突破及成果转化,与国家重点领域发展规划无缝衔接,实现对国家重大产业亟需的快速响应。同时,建议今后对高端精密装备精度测量基础理论持续高强度支持,推动重点突破,设立重大项目、重点项目群、或重大研究计划,资助“极端条件下可直接溯源几何量超精密测量方法”、“多物理场耦合测量与精度调控”、“多源、多维、多尺度测量信息高性能传感”、“智能制造大场景精密测量方法”等前沿领域,引领机械测试研究新方向,推动全国优势研究资源的协同攻关,实现“并跑”,甚至“领跑”,为全面支撑我国高端装备制造能力跨越式发展提供精密测量理论与技术保障。

Copyright © 2012-2024 中国仪器仪表学会分析仪器分会版权所有 京ICP备12023239号
Baidu
map